
Screen-Space Secondary Lighting

Dale Whinham

Supervisor: Dr. Gary Ushaw

School of Computing Science
Newcastle University

This dissertation is submitted for the degree of
BSc. Computer Science (Games Engineering)

Word count: 12,047

May 2017

Declaration

I declare that this dissertation represents my own work, except where otherwise stated.

Dale Whinham
May 2017

Acknowledgements

I would like to extend my sincerest thanks to Dr. Gary Ushaw, Dr. Graham Morgan,
and Dr. William Blewitt for their valuable support and assistance provided during the
course of the project and the writing of this dissertation.

Abstract

Simulating secondary lighting (reflected light) within a computer-generated 3D envir-
onment is a very challenging and computationally expensive problem to solve. The
canonical solutions involving raytracing produce the most convincing results, however
the high complexity of raytracing makes it unsuitable for the real-time rendering
performance we require in today’s fast-paced video games.

In this dissertation, we investigate and implement an advanced rendering technique
called screen-space ambient occlusion, which seeks to approximate a secondary lighting
effect in linear time, whilst still maintaining an acceptable level of realism. Through
performance analysis, we find that this technique is an efficient and computationally
inexpensive addition to a typical game engine, which makes it a good candidate
for greatly improving the visual fidelity of the simulated 3D environment without
severely impacting the overall performance of the game. We also show that the effect is
achievable on current-generation smartphones with very promising performance figures.

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Setting the Scene . 1

1.2 Hypothesis . 2

1.3 Aim and Objectives . 2

1.4 Dissertation Outline . 3

2 Background Research 5

2.1 Rasterisation . 5

2.2 Light and Global Illumination . 6

2.3 Ambient Occlusion . 7

2.4 Hardware Acceleration of Ambient Occlusion 9

2.5 SSAO: Use in Video Games . 12

2.6 Deferred Rendering Pipelines and the G-Buffer 15

2.7 SSAO: Theory of Operation . 19

2.7.1 Crytek SSAO . 19

2.7.2 Hemispherical SSAO, aka. StarCraft II SSAO 21

2.7.3 Sample Kernel Generation . 24

2.7.4 Noise Reduction with Blur Filter 25

x Contents

3 Implementation 27

3.1 High-Level Architecture Overview . 27

3.2 Hardware Platforms and Operating Systems 27

3.3 Programming Language and Middleware 29

3.4 Graphics Abstraction Layer . 30

3.5 Input/Output Abstraction Layer . 31

3.6 Cross-Platform Game Engine . 32

3.7 Deferred Rendering Pipeline with SSAO 33

3.8 3D Assets Used for Testing . 34

3.9 Renderer Profiling Procedure . 34

4 Results and Evaluation 39

4.1 PC-Class Hardware . 39

4.1.1 Frame Timings . 39

4.1.2 Frames Per Second . 42

4.2 Smartphone/Tablet-Class Hardware . 43

4.2.1 Frame Timings . 43

4.2.2 Frames Per Second . 44

4.3 Visual Quality . 46

4.4 Summary . 47

5 Conclusions 51

5.1 Revisiting Our Original Goals . 51

5.2 What We Have Learned . 52

5.3 Possible Improvements . 52

5.4 Future Work . 53

Glossary 55

Contents xi

References 61

Appendix A Screenshots 63

Appendix B Pseudocode 73

B.1 Computing Hemispherical SSAO . 74

B.2 Computing Blur . 75

List of Figures

2.1 A scene from the video game Dying Light (2015), with ambient occlusion
disabled. 8

2.2 As in figure 2.1, but with ambient occlusion enabled. 8

2.3 Diagram showing the view frustum in relation to a 3D scene. The view
frustum defines the region of interest - objects that are found to lie
either fully or partially outside it will be clipped. 11

2.4 A scene from the video game Crysis (2007), without ambient occlusion. 13

2.5 The isolated ambient occlusion component of the scene depicted in
Figure 2.4. 13

2.6 After combining the image data shown in Figures 2.4 and 2.5 - the final
composite image. 14

2.7 Diagram showing a simple single-pass forward rendering pipeline. . . . 15

2.8 Diagram showing a two-pass deferred rendering pipeline. 18

2.9 Diagram showing Crytek’s method of using a sampling sphere to calculate
the ambient occlusion factor for a point. 20

2.10 An example of the exposed surface darkening and edge halo character-
istics of Crytek’s SSAO algorithm. 21

2.11 Diagram showing alternative method of using a normal-oriented sampling
hemisphere to calculate the ambient occlusion factor for a point. 22

2.12 Samples within a hemisphere, in tangent-space. 23

2.13 A 4× 4 texture containing a set of rotation vectors for randomising the
hemispherical samples. 24

xiv List of Figures

2.14 Comparison of SSAO before and after blur. 26

3.1 Diagram showing the high-level architecture of the project. 28

3.2 The 4-pass SSAO deferred rendering pipeline used in the project. . . . 35

4.1 Chart showing frame timing results for our 2011 Custom PC. 41

4.2 Chart showing frame timing results for our 2013 MacBook Pro. 41

4.3 Chart showing frames-per-second results for our PCs. 43

4.4 Chart showing frame timing results for our OnePlus 3 smartphone. . . 44

4.5 Chart showing frames-per-second results for our smartphones/tablets. . 45

4.6 Comparison of SSAO being applied to an irregular object. 46

4.7 Comparison of SSAO passes at 4 and 16 samples. 48

4.8 Comparison of complete atrium scene with and without SSAO. 49

A.1 Screenshot of our SSAO demo application, with SSAO disabled. 64

A.2 As in Figure A.2, but with 16-sample SSAO enabled. 65

A.3 The G-buffer visualisation feature showing (clockwise from top left, with
image correctly oriented) the position buffer, normal buffer, SSAO pass,
and albedo buffer. 66

A.4 SSAO pass - 4 samples. Note the “banding” around the arches due to
undersampling. 67

A.5 SSAO pass - 8 samples. Banding is still present, but greatly reduced. . 68

A.6 SSAO pass - 16 samples. Banding has almost disappeared. 69

A.7 SSAO pass - 32 samples. The differences between this and the next two
sample counts are now much less perceivable. 70

A.8 SSAO pass - 64 samples. 71

A.9 SSAO pass - 128 samples. 72

List of Tables

3.1 Table of PC-class hardware used for testing. 29

3.2 Table of smartphone/tablet-class hardware used for testing. 29

Chapter 1

Introduction

In this chapter, we will set the scene for the project, introduce the hypothesis, and
detail our proposed solution to the problem in the form of an overall aim, and set of
individual objectives.

1.1 Setting the Scene

In the video games industry, computer-generated graphics play a critical role in shaping
the overall experience of the end product. Modern video games often aim for a high
level of realism and therefore make use of many different kinds of rendering algorithms
to recreate the way things appear in the real world. In rendering, the simulation of the
way light behaves allows us to create effects such as reflections, refractions, and shadows.
Combining these effects adds additional perceived realism to a computer-generated
scene.

These rendering effects come at a considerable computational cost, and most of
the time a specialised piece of hardware dedicated to graphics rendering is used, the
graphics processing unit (GPU). This has two advantages - it accelerates generation of
the rendered output, and it keeps the system’s central processing unit (CPU) free to
take care of other tasks.

However, even with dedicated hardware to take care of rendering, we still need to
be concerned with the efficiency of the rendering algorithms we use. In a video game,
frequent slowdowns during gameplay are detrimental to the experience and can make
a game less enjoyable, or more difficult to play.

2 Introduction

1.2 Hypothesis

For many problems in computing, a compromise can be made between accuracy and
performance, and this can make infeasible tasks a possibility. From our background
research, we deduce that this idea can be applied to rendering algorithms, and so
it follows that many expensive rendering effects can be replaced with less costly
approximations, where the effect is considered “good enough” for inclusion in a video
game.

In this dissertation, we investigate the implementation and performance of an
advanced rendering technique known as screen-space ambient occlusion (SSAO). This
algorithm attempts to approximate the effects of the much more expensive canonical
ambient occlusion effect. Ambient occlusion adds depth to a computer-generated scene
by darkening surfaces that are less exposed to light, as one would expect in the real
world.

1.3 Aim and Objectives

The original aim of the project was to implement and analyse two screen-space rendering
algorithms, however we realised midway into the project that this would be quite an
ambitious goal considering the time constraints. The objectives were amended such
that only the first algorithm would be implemented, and instead we decided to analyse
the performance of the first algorithm in more detail.

The new aim is to implement the SSAO algorithm, and determine its suitability
for use in video games, commenting on the ease of implementation, the performance
impact it has on the rendering process, and the visual quality of the output. We
decided to take the opportunity to attempt to bring the algorithm to a second, less
powerful platform, and if successful, compare how well the algorithm scales.

This will be broken down into the following objectives:

1. Prepare a suitable graphics framework using OpenGL and C++ for the imple-
mentation of the screen-space rendering algorithm.

2. Research the use of SSAO algorithms - calculating lighting as part of a post-
processing stage in which only the visible pixels are considered.

3. Implement the SSAO algorithm.

1.4 Dissertation Outline 3

4. Evaluate the performance:

(a) Use a number of test platforms representing typical hardware used for
playing video games.

(b) Measure the impact on the rendering process in terms of time spent per-
forming the calculations.

(c) Adjust a number of tuning parameters the algorithm offers, commenting on
how they affect the performance and visual fidelity.

1.4 Dissertation Outline

The dissertation is structured as follows:

Chapter 1 This chapter - introducing the topic area, our hypothesis, aim, and ob-
jectives.

Chapter 2 We present our background research including references to previous work
in this field. We introduce the reader to the complex computational problems
faced by graphics developers in the video game industry, and how we aim to
solve them using the concept of hardware-accelerated rasterisation and lighting
calculations. We discuss the idea of global illumination and give an example
of how ambient occlusion can improve a computer-generated scene. We then
discuss how we can accelerate an approximation of ambient occlusion and review
some examples of its use in video games. Finally, we discuss renderer pipeline
architecture, and the theory of how screen-space ambient occlusion works.

Chapter 3 We discuss the high-level architecture of our implementation, which target
platforms we chose, and which tools and technologies we chose, including our
reasoning for doing so. We then discuss each of our software components in more
detail, as well as our test data and profiling procedures.

Chapter 4 The results collected during our testing are presented in a visual form,
and we discuss and evaluate our findings, commenting on raw performance as
well as visual quality.

Chapter 5 Finally, we reflect on what we have learned as a result of completing the
project. We discuss some of the problems we faced and what might have been

4 Introduction

done differently. We then bring the dissertation to a conclusion by suggesting
some further areas to investigate should there be a desire to continue our research.

Chapter 2

Background Research

In this chapter, we will look at the background research which was carried out in
support of the project. We will examine previous research in this field, and discuss
how we build on it to achieve our aims and objectives.

2.1 Rasterisation

Three-dimensional computer-generated graphics (3D graphics) are, as a generalisation,
difficult and complex to compute, presenting many challenges for computer architects,
hardware designers, and software engineers alike. They can easily involve many
thousands of mathematical computations involving fractional numbers, which are
needed to transform positions in 3D space (also known as vertices) into the two-
dimensional (2D) space of a monitor or television. The process of drawing a 3D
representation of an object onto a 2D surface for the purposes of presenting it on a
video display is known as rasterisation.

In a video game scenario, all of the calculations required for the rendition of a
scene must be completed as quickly as possible in order for the game to appear fluid
to the player - typically in well under 1

60
th of a second. A typical video game will

have many other subsystems to update as well as the graphics, such as audio, physics,
human input from a controller, and networking in the case of a multiplayer online
game. Hence, the compute time available for graphics rendition may actually only be
a small fraction of that 1

60
th of a second window.

6 Background Research

The problem of how to process and rasterise 3D geometry quickly has been (and
continues to be) solved with advancements in GPU technology. The GPU has be-
come increasingly ubiquitous ever since the introduction of dedicated 3D acceleration
hardware in consumer products in the mid-to-late 1990s. A trend which began as
custom integrated circuits inside early 3D-capable games consoles, such as the Sony
PlayStation and Nintendo 64, would later inspire the invention of 3D accelerator cards
for desktop IBM PC compatibles. This made high-quality real-time 3D graphics in
video games a possibility on ordinary household computers. As of 2017, GPUs can
now be found embedded within small devices such smartphones, tablets, and handheld
games consoles.

Now that GPUs are commonplace, we can easily rasterise complex geometry on
average computer hardware thanks to the vast parallelism a GPU provides, which
makes the process of transforming 3D positions into 2D space for display on a screen a
trivial task. The focus now shifts towards the problem of approaching what is known
as photorealism in real-time - producing computer-generated output which is difficult
to distinguish from a photograph or video of a real life scene.

2.2 Light and Global Illumination

Photorealism in computer graphics is achieved by simulating the behaviour of light.
This creates an even bigger problem for us, because light interacts with objects in
many different ways - a light-coloured polished surface will reflect photons away from
it, whereas a darker matte surface will absorb them. If we consider a scene with a room
full of shiny objects, we would have to follow the path of each photon as it bounces
from one shiny object to another - possibly amounting to thousands of bounces per
photon. In real life, photons can potentially travel for a very long time and experience
an enormous amount of bounces before eventually being absorbed, so this kind of
simulation will typically place an artificial limit on the number of bounces to simulate.

This technique is often used in the film industry, and the process of doing so
is known as raytracing. However, in the film industry there is no requirement for
instantaneous, real-time rendering performance, because the output will be a fixed
media such as film or digital video, and much more time can be afforded to perform
long computations. Additionally, the input for the rendering process is known ahead
of time, and so it can be distributed across several computers, also known as a render

2.3 Ambient Occlusion 7

farm. In this way, each computer can render individual frames of animation in parallel
with others.

In video games, we need to find other ways to achieve similar effects, but in far
less time, and with only a single machine at our disposal. Raytracing is currently not
feasible for real-time rendering because of its complexity. Instead, we look for patterns
and generalisations that we can use to approximate the behaviour of light under certain
conditions, to create effects such as reflections and shadows.

The algorithms which help us achieve photorealism by simulating the behaviour of
light belong to a family of algorithms known as global illumination or secondary lighting
algorithms. They have the capability of recreating the effects of light having bounced
from one surface within the scene to another, and are not limited to simulating direct
light - light which has travelled directly from the source to a surface.

2.3 Ambient Occlusion

One of the algorithms belonging to the global illumination family of algorithms is
known as ambient occlusion. This technique allows one to determine how exposed a
surface is to ambient light. If a point on a surface is partially or fully blocked from
receiving ambient light (occluded), it can be shaded darker than non-occluded points
to make it appear more life-like.

Ambient occlusion has its origins in Miller’s work on surface accessibility in 1994.
Miller proposed an approach for determining the likelihood of a region to have accumu-
lated dirt or become tarnished due to the region being a concave corner or crease. This
calculation could then be used to shade the region darker accordingly (Miller, 1994).

In later years, the film production industry would begin to make use of a similar
technique to determine the accessibility of a surface to light. This is evidenced in the
application notes for Pixar’s RenderMan software, which describes the technique and
names it as ambient occlusion (Christensen, 2002).

Figures 2.1 and 2.2 show an example of the visual improvement ambient occlusion
has on a computer-generated scene. In the second image, notice the soft shadows near
the ceiling and around the shelving. This is an interesting and desirable effect to have,
because it adds depth and realism to an image. Corners of geometry which would not
receive direct light are softly darkened to make them appear as if they were in shadow.

8 Background Research

Figure 2.1 A scene from the video game Dying Light (2015), with ambient occlusion disabled.

Figure 2.2 As in figure 2.1, but with ambient occlusion enabled.

To obtain a “true” ambient occlusion effect, we would need to trace the paths of
light rays as they interact with all objects in the scene, and determine whether any
light reflected from their surfaces reaches any point in question, taking into account
the surface properties of each object involved. In a video game, even objects not visible

2.4 Hardware Acceleration of Ambient Occlusion 9

to the player would need to be taken into account when performing these calculations,
such as geometry behind the player.

The problem here is a matter of computational complexity. Referring back to our
brief discussion of raytracing, it should be clear to see that calculating true ambient
occlusion would be a very costly operation for a video game to have to perform for
every frame of graphical updates. Shanmugam and Arikan found this to be the case in
2007.

Indeed, for static geometry - geometry which never moves, such as terrain - we
could pre-calculate the contributions each surface has toward the ambient occlusion,
and store the data alongside the geometry. This is known as baking, and it allows
data that is expensive to compute to be quickly looked up at run-time rather than
computed on-the-fly. However, this is not always possible, especially for games which
have hundreds of moving entities. An example of this could be a game series such as
Grand Theft Auto, where city scenes with lots of moving traffic are commonplace, and
all of the vehicles can be interacted with by the player.

The interesting nature of the problem along with the striking amount of visual
improvement the ambient occlusion effect adds to an otherwise simple and “flat”-looking
3D scene are some of the main reasons why we decided to investigate it.

2.4 Hardware Acceleration of Ambient Occlusion

Hardware acceleration refers to the use of specialist or bespoke hardware to speed up a
computational task. We use a GPU to facilitate the hardware acceleration of graphics
computations.

With the assumption that we have a GPU available to us, it would make sense to
pursue methods of accelerating the ambient occlusion effect which utilise its strengths
to our best advantage. A typical GPU will excel at tasks that are “embarrassingly
parallel”, which means that the task is easily broken down into a large number of
sub-tasks that are not interdependent of each other (Herlihy and Shavit, 2008). This
is what makes the GPU well-suited for graphics. A typical 1080p-resolution monitor
or television consists of over 2 million pixels, and a desktop computer’s main CPU will
typically have 4 cores, so a software rasteriser running on the CPU would potentially
only be able to divide the workload by 4. As of 2017, the current generation of GPUs
manufactured by NVIDIA offer a variety of execution core configurations, ranging from

10 Background Research

640 cores in the budget model to 3840 cores in the high-end model (NVIDIA, 2017).
This usage of hundreds or thousands of parallel cores means that a workload such
as rasterisation on the 1080p screen is reduced to a much smaller number of parallel
iterations.

In 2007, Shanmugam and Arikan introduced their approach to a hardware-accelerated
ambient occlusion approximation, which used the programmable and parallel nature of
modern GPUs to break down the computation into an efficient multi-pass algorithm.
One pass is able to compute what they refer to as “high-frequency” occlusion, which
approximates the occlusion of nearby surfaces, and a second, independent pass approx-
imates the “low-frequency” occlusion of objects that are more distant.

The most important takeaways from the methods presented in Shanmugam and
Arikan, 2007 are:

• Only buffers containing depth data and normal data - which are very likely to
already exist in a typical video game engine’s rendering pipeline - are required to
compute the high-frequency effect.

• The complexity of computing the ambient occlusion is completely independent
of the complexity of the 3D geometry that makes up the scene. This means that
the performance of the algorithm will not change if there are more or less objects
in the 3D scene, or if the objects are more or less detailed.

• The algorithm computes the occlusion on a per-frame basis, which makes it
suitable for moving or deformable geometry, and is therefore not limited to static
geometry such as terrain.

• The computations only involve data which actually has an influence on the final
rendered output - i.e. visible to to the viewer. In other words, geometry which is
behind the player in a video game or hidden behind other objects will not be
processed unnecessarily.

To elaborate on the third point, the data used to calculate the ambient occlusion is
the set of data that exists after :

1. The GPU has discarded position data for objects that are partially or fully outside
the region of interest. This includes objects that are beyond the horizontal and
vertical borders of the screen, as well as objects that are too far away from or

2.4 Hardware Acceleration of Ambient Occlusion 11

too near the “camera”. Anything which would exist outside of the view frustum
(see Figure 2.3) is discarded by the GPU - this is known as clipping.

2. The GPU has discarded image data for objects which have been determined to be
hidden behind other objects. This process is known as depth testing, and occurs
after a pixel representing a potentially visible location (known as a fragment)
has been given its final colour. If a fragment has been determined to be behind
the currently frontmost object in the scene, it can be discarded because it has
“failed” the depth test.

Far clip plane

Near clip plane

Viewing position
(camera)

Figure 2.3 Diagram showing the view frustum in relation to a 3D scene. The view frustum
defines the region of interest - objects that are found to lie either fully or partially outside it
will be clipped.

The data which remains after these two stages of the so-called rendering pipeline is
said to be in screen-space, because it is associated with a visible pixel on the screen
(N.B. Shanmugam and Arikan use the term “image-space” to refer to the same concept).

Though Shanmugam and Arikan detailed two separate algorithms, we will only
concern ourselves with the high-frequency (near occlusion) algorithm. We will refer to
this and similar techniques as SSAO algorithms.

12 Background Research

2.5 SSAO: Use in Video Games

Shanmugam and Arikan’s paper brought the concept of performing ambient occlu-
sion computations in screen-space to the attention of the wider graphics community,
including many video games developers, who quickly began to work on their own im-
plementations and variations. For many, this was an exciting development in graphics,
as it showed that the effect was possible to achieve in realtime on consumer-grade
hardware. One such blogger and game developer referred to 2007 as “the year SSAO
broke” (Shopf, 2008).

In November 2007, Crytek, a video games developer based in Germany, released
Crysis, a well-received first-person-shooter game for the PC. The game quickly gained
a reputation for its unprecedented demands on computer hardware when set to the
highest rendering detail settings, due to the extremely advanced capabilities of its
renderer. Crysis would go on to be used as a benchmarking tool in reviews of GPUs for
several years because of this, and its reputation led to the comedic use of the phrase
“but can it run Crysis?” in response to reviews of new PC hardware (Leather, 2009).

Crysis is especially notable to us, because among the many advanced rendering
techniques offered by its game engine, SSAO is one of its most prominent. Additionally,
Crysis is said to be the one of the first video games to ship with this rendering technique
(NVIDIA, 2013).

In the months leading up to the release of Crysis, a paper was published by one of
the engineers at Crytek which detailed some of new technologies found in their new
game’s engine. Mittring, 2007 briefly describes how Crytek engineers simplified the
algorithm to a single pass (as opposed to the two passes shown in Shanmugam and
Arikan, 2007) and also managed to compute their version of the effect with only the
depth data that already existed in their rendering pipeline (Shanmugam and Arikan,
2007 used a combination of depth data and normal data). Although Mittring, 2007
spares the exact implementation details of their version of the algorithm, it was this
paper that gave SSAO its popular name, and convinced the video games industry that
such an effect was a possibility within video game engines.

Figure 2.4 shows a typical scene in Crysis, without SSAO enabled. Although
some shadows are being computed for objects by means of shadow mapping (note the
shadows being cast by the large tree onto the wall), the scene lacks some perceivable
depth because there is little colour variation within the concave sections of the wall,
and within the vegetation near the front of the scene.

2.5 SSAO: Use in Video Games 13

Figure 2.4 A scene from the video game Crysis (2007), without ambient occlusion.

Figure 2.5 The isolated ambient occlusion component of the scene depicted in Figure 2.4.

In Figure 2.5, we can see the results of an SSAO computation on the same scene.
At this stage, no colour is involved as the output of the algorithm is a single number
for each pixel in the image that represents its occlusion factor. Areas that are more

14 Background Research

occluded receive a higher occlusion factor value, and this value is normalised between
0 and 1.

For the purposes of visualisation, we assume that the value 1 represents full
brightness (white) and 0 represents no brightness (black). We then subtract the
occlusion factor from 1 to produce the image. It is useful to note here that the amount
of impact the occlusion factor has, could easily be adjusted for artistic reasons by
multiplying it with a weight value, so that the effect can be emphasised or made more
subtle by increasing or decreasing the darkening effect if the designer desires.

Figure 2.6 After combining the image data shown in Figures 2.4 and 2.5 - the final composite
image.

With an occlusion factor calculated for every pixel in the scene, it can then be
combined with the original output in Figure 2.5 to produce the final image shown
in Figure 2.6. Note how the concave wall sections now have extra perceivable depth
within the corners, and that individual blades of grass and leaves within the foliage at
the front of the scene now stand out from one another.

With SSAO promising to be both efficient and highly appreciable as seen in our
Crysis example, it should be easy to see why it is such an interesting topic of research.

2.6 Deferred Rendering Pipelines and the G-Buffer 15

2.6 Deferred Rendering Pipelines and the G-Buffer

In computer graphics, we often talk about the rendering pipeline. This refers to the
several processing stages through which geometry data passes in order to produce the
final image. One of the simplest forms of rendering pipeline is shown in Figure 2.7, and
this is known as a forward rendering pipeline. A forward rendering pipeline is named
so because the data moves directly forward - from the application software, through
the pipeline, and onto the screen in a single pass.

Lighting
Calculations

(Fragment Shader)

Vertex Transform -
model-space to

clip-space
(Vertex Shader)

Screen Output
Game Engine

(Sends geometry
vertices to GPU)

Figure 2.7 Diagram showing a simple single-pass forward rendering pipeline.

In a forward rendering pipeline, the stages of processing are as follows:

1. The application (in our case, the game engine) sends some geometry data (vertices)
to the GPU. A typical game engine will try to minimise the amount of geometry
sent to the GPU in order to save memory bandwidth and increase performance
as a result, because sending geometry to the GPU can be an expensive process.
The game engine may use culling techniques to determine which geometry is not
visible or is too far away - this will reduce the amount of geometry the GPU
itself has to cull later in the pipeline.

2. A program which executes on the GPU, known as a vertex shader, processes the
vertex data and applies a number of per-vertex transforms to it. The transforms
will typically involve a number of mathematical matrix multiplications to apply
translations (repositioning), rotations, and scaling to the vertices. A piece of
geometry will typically have its coordinates defined in relation to the origin of
a Cartesian coordinate system (x = 0, y = 0, z = 0), with the the origin at its
centre - it can be said to be defined in model space. Applying a transformation
matrix lets us reposition, rotate, and resize an object in relation to the game
world. Hence, this stage can be said to be taking a object from model space to
world space, and involves the use of a model matrix.

16 Background Research

Another matrix multiplication is used to simulate the effect of a camera by moving
and rotating all world geometry in relation to the viewing position - this is known
as going from model space to view space, and uses a view matrix. A final matrix
multiplication is then applied which defines the view frustum (or viewing volume),
which is typically either a perspective projection or orthographic projection. This
matrix takes the object from view space to clip space, as anything lying outside
of the view frustum is then discarded (clipped) by the GPU. At this stage, all
visible vertices will now lie inside the range −1 to 1 on all three axes, which is
known as being within normalised device coordinates.

3. Once the geometry has been transformed and clipped, it is sent to a second
program executing on the GPU, known as a fragment shader. As we mentioned
earlier, a fragment is a potentially visible pixel associated with a location in 3D
space. The fragment shader determines the final colour of the pixel, and this
is the opportunity at which a typical forward renderer will apply some form of
lighting model to calculate the brightness of the surface. An example of this is
Phong shading, which makes use of the normal to a surface to calculate brightness
based on light position, incidence angle, and reflection angle (Phong, 1975). If
an object uses image-based texturing (for example, applying an image of some
bricks to a surface to make it appear like a brick wall), then the GPU can sample
the texture to determine the colour of each pixel.

4. If a fragment passes the depth test we mentioned earlier, the pixel is written to
the framebuffer, and the depth buffer is also updated to reflect the new depth
at that screen-space location. The framebuffer and depth buffer are temporary
buffers whose dimensions are the same size as the screen. Often a technique
known as double buffering is used, where two framebuffers, known as the front
and back buffers, are used. The back buffer is cleared, drawn onto, and then
made visible (presented) by swapping it with the back buffer once all drawing
operations are complete. This helps to avoid graphical tearing, as the back buffer
can be swapped with the front buffer in perfect synchronisation with the refresh
rate of the monitor or television.

The advantages of a forward rendering pipeline are that they are simple to implement
and have low memory requirements - we don’t need any extra storage other than the
screen output buffers. The game engine need only perform one rendering pass per
frame, and this may be enough for the simplest rendering requirements - i.e. only a few
light sources are present within the game world. However, since all lighting calculations

2.6 Deferred Rendering Pipelines and the G-Buffer 17

need to occur at once, we can easily end up with an extremely complex fragment shader
stage performing lighting calculations for every single fragment, even if they end up
being discarded as a result of failing the depth test. If we were to use “big O” notation
for the computational complexity of a forward renderer’s lighting stage, it would be
O(f × l), where f represents the number of fragments, and l represents the number of
lights (Owens, 2013).

Additionally, since we are interested in implementing an SSAO algorithm, we need
to be able to capture the screen-space geometry data set, and be able to refer to it
when calculating our ambient occlusion factor. As we saw in Section 2.5, Crytek was
able to create the effect by only using the depth buffer, and as such, their version of
the effect is possible with a simple forward renderer. However, we will discuss a more
advanced version of the effect in Section 2.7 for our own implementation, and one of
its requirements is that we have additional screen-space data available to us as well as
the depth buffer.

One solution that gives us screen-space geometry data buffers and also allows us to
perform faster lighting calculations is called deferred rendering. As the name implies,
we leave the lighting calculations until after we have had the opportunity to perform
some extra processing on the screen-space geometry data. An example of a deferred
rendering pipeline is shown in Figure 2.8. Here, a two-pass approach is taken, which
separates lighting calculations into its own pass. What is important here is that the
second pass only operates on the set of data that has been determined to contribute to
the final image - we do not suffer from wasted lighting computations in the fragment
shader this time.

In the first pass, we perform most of same operations we do in a forward renderer,
until we get to the fragment shader stage. Here, the fragment shader no longer performs
any lighting calculations, however, it does calculate the colour of a surface as if it were
at full brightness, again applying any textures as necessary. We refer to this colour
as the albedo colour. It then outputs data to a set of buffers in GPU memory, which
are stored as textures. This means that the GPU can sample them later, as it would
when sampling a texture to be applied to geometry, like in our brick wall example. The
data outputted to the textures can vary here, but in our example we have recorded the
view-space position, the view-space normal, and the albedo colour of every pixel.

The textures used for data storage in this fashion are referred to collectively as the
geometry buffer or G-buffer. With it, we can quickly look up the original view-space
position, normal, and albedo colour associated with each pixel in the final image. When

18 Background Research

Game Engine
(Sends geometry
vertices to GPU)

Vertex Transform -
model-space to

view-space AND
clip-space

(Vertex Shader)

Write view-space
data to G-buffer

(Fragment Shader)

Game Engine
(Sends full-screen

’quad vertices to GPU)
Screen Output

Lighting Calculations,
sampling the G-buffer

(Fragment Shader)

Vertex Transform -
model-space to

clip-space
(Vertex Shader)

Position Texture
(view-space)

Albedo Texture
(base colour)

Normal Texture
(view-space)

Position Texture
(view-space)

Albedo Texture
(base colour)

Normal Texture
(view-space)

First Pass
(Geometry)

Second Pass
(Lighting)

GPUCPU

Figure 2.8 Diagram showing a two-pass deferred rendering pipeline.

we visualise the position and normal textures of the G-buffer as in Figure 2.8, they
appear as unusual colours because the red, green and blue components of the texture
have been used to store x, y, and z coordinates instead of actual colours. After the
first pass, there is no screen output - only the G-buffer is written to.

In the second pass, we do not send the game world’s 3D geometry to the GPU.
Instead, we render a flat 2D full-screen rectangle (known as a quad in computer
graphics) which spans the entire screen. The vertex shader can be very simple for this
pass if care is taken - a rectangle whose bottom-left coordinates are x = −1, y = −1

2.7 SSAO: Theory of Operation 19

and top-right coordinates are x = 1, y = 1 will require no transformation as it covers
the whole range defined by normalised device coordinates on the x and y axes.

In the fragment shader stage, we sample the G-buffer for each pixel covered by our
full-screen rectangle, and we extract the position, normal, and albedo from it. We
can now perform the same lighting calculations as we did in our forward rendering
pipeline, except this time, we can be assured that all lighting calculations will be used.
We can say that the lighting calculations are being done in screen-space, as we are
only operating on data associated with the final screen output. The computational
complexity is reduced to O(p× l), where p represents the number of screen pixels, and
l represents the number of lights (Owens, 2013).

Most importantly for us, we can insert additional passes into this pipeline that
make use of the G-buffer, and extend the final pass to include data generated during
our intermediate passes. This gives us our opportunity to calculate ambient occlusion
in screen-space, the process of which we will describe in the next section.

2.7 SSAO: Theory of Operation

For a given pixel, SSAO is computed by inspecting the depth (z value) of a number of
randomly-generated points in clip space surrounding the position associated with the
pixel. This is known as sampling, and SSAO algorithms tend to use either a sampling
sphere or hemisphere of some radius. The collection of samples is called a sample
kernel, and we generate it once during the initialisation of the application. We will go
into further detail on how the samples are generated in Section 2.7.3.

Note that the more samples we use, the slower the algorithm’s performance, as the
performance of the SSAO stage can be said to be O(p × s), where p is the number
of screen pixels, and s is the number of samples. We will look at ways to keep the
sample count low, but still have acceptable results by post-processing the SSAO stage
to remove noise caused by undersampling.

2.7.1 Crytek SSAO

Crytek showed that SSAO is possible by only using screen-space depth data. Figure
2.9 shows how their approach makes use of a sampling sphere to inspect the depth of
some random points around a position. The more points that are determined to be

20 Background Research

inside geometry, the higher our occlusion factor, and the darker we shade that pixel. In
Figure 2.9, we can see that ten out of the sixteen sample points are inside the geometry.
We know this because their depth, or z value is greater than the z value present in our
G-buffer, which represents the depth of the geometry.

The fraction of samples inside geometry out of the size of our sample kernel gives
us our occlusion factor. Referring back to Section 2.5 where we saw Crysis using the
occlusion factor to darken occluded areas of a scene, we can determine a brightness
factor for a given pixel using the formula:

occlusion factor =
samples inside geometry

total samples
brightness = 1− occlusion factor

Increasing depth (z)

Screen-space pixel

Samples within sphere around
position associated with

current pixel

Figure 2.9 Diagram showing Crytek’s method of using a sampling sphere to calculate the
ambient occlusion factor for a point.

2.7 SSAO: Theory of Operation 21

Crytek’s technique is simple and effective. When we sample corners or concave
areas, we end up with a greater proportion of samples inside geometry, and the area
is darkened. However, it has a characteristic which may or may not be desirable
depending on the artistic goals of the designer. Looking at Figure 2.9, we realise that
about half of the samples will always be inside geometry when testing a point on a
flat surface. This has the effect of “greying” surfaces that would otherwise be fully
exposed to light. Additionally, as we get closer to a non-occluded edge, the number
of samples inside geometry tails off, and the edge of the surface appears lighter, with
a kind of “halo” effect. Figure 2.10 shows these artifacts in more detail. In practice,
these artifacts may not be noticable in the final scene, but it is interesting to note.

Figure 2.10 An example of the exposed surface darkening and edge halo characteristics of
Crytek’s SSAO algorithm.

To avoid these artifacts, we can use an improved version of the algorithm so that a
surface-aligned hemisphere is used instead of a sphere. This way, the surface we are
interested in does not contribute to its own occlusion factor - we can say it no longer
suffers from self-occlusion.

2.7.2 Hemispherical SSAO, aka. StarCraft II SSAO

In 2008, American games developer Blizzard Entertainment showed that they were
able to overcome the self-occlusion problem when implementing SSAO in their video

22 Background Research

Normal to wall
surface

Samples within normal-oriented
hemisphere around position
associated with current pixel

Screen-space pixel

Increasing depth (z)

Figure 2.11 Diagram showing alternative method of using a normal-oriented sampling
hemisphere to calculate the ambient occlusion factor for a point.

game StarCraft II (Filion and McNaughton, 2008). In Figure 2.11 we can see how the
technique has been modified to use a hemisphere. We align the base of the hemisphere
such that it lies perpendicular to the point being tested, and to achieve this, we make
use of the normal. In Section 2.6, we discussed the idea of placing normals into the
G-buffer, and this is where having quick access to the normal associated with a pixel is
very useful.

Our hemispherical sampling kernel is constructed in the same way as for a spherical
kernel, except we clamp the radius on one axis to be positive-only (between 0 to 1).

We can offset a sample from our kernel by adding the sample’s x, y, and z coordinates
to our position coordinates retrieved from the G-buffer. In order to re-orient the sample
with respect to the normal at that position, achieving the effect we see in Figure 2.11,
we need to employ a special transformation matrix known as a TBN matrix. The TBN

2.7 SSAO: Theory of Operation 23

matrix is named so because it is constructed using a tangent, bitangent, and normal.
In a similar way to how we move our game world’s geometry from model-space, to
view-space, to clip-space using transformation matrices, a TBN matrix moves a point
from tangent-space to some other space. In our case, we want to move the point into
view-space to match the rest of our position data.

Figure 2.12 shows our hemispherical samples in tangent space, and how the tangent,
bitangent, and normal vectors are related to each other. When generating samples, we
can use the x axis to represent tangent, y for bitangent, and z for normal. The TBN
matrix allows us to rotate the hemisphere such that its normal is perfectly aligned
with the normal of the point we are sampling around.

Normal (z)

Tangent (x)

Bitangent (y)

Figure 2.12 Samples within a hemisphere, in tangent-space.

The tangent and bitangent effectively determine the rotation around the normal (or
z axis) for the hemisphere. We could use the same values for tangent and bitangent for
every pixel as we traverse screen-space and perform our sampling, but it turns out that
doing so will create undesirable artifacts such as “banding”, as the same predictable
pattern of sampling would be applied along a piece of geometry. To avoid this, and to
smoothen out the results, we can apply a random rotation to the hemisphere around
the z axis for every pixel. We can store an array of rotations as randomly-generated
two-dimensional coordinates within the range −1 to 1 on the x and y axes (z is always
0 as this is our axis of rotation). Then, we can upload them to the GPU as a texture
as shown in Figure 2.13. This way, we can quickly access them inside the fragment
shader program. In our implementation, we use a 4 × 4 texture of rotation vectors,
which is repeated (“tiled”) across the screen as we perform our SSAO calculations. This
technique is similar to how randomisation was achieved in Filion and McNaughton,
2008.

The rotation vector acts as a new tangent, and when constructing our TBN matrix,
we use it and the view space normal to derive the bitangent, and subsequently the
matrix. This is done as follows:

24 Background Research

Figure 2.13 A 4 × 4 texture containing a set of rotation vectors for randomising the
hemispherical samples.

T⃗ = R⃗− N⃗ × (R⃗ · N⃗)

B⃗ = N⃗ × T⃗

TBN =

Tx Bx Nx

Ty By Ny

Tz Bz Nz

...where N is the view-space normal and R is our random rotation vector. Note

that when calculating T , we multiply N by the vector dot product of R and N , and
subtract it from R. This matrix can then be used to properly re-orient and randomise
any of our hemisphere samples.

Once a sample has been re-oriented and the depth at that sampling point determined,
we project the sample into clip-space (by applying the projection matrix), so that it
becomes associated with a nearby screen-space pixel. Finally, we examine that pixel’s
associated depth buffer value, and from here, as with the Crytek technique, we can
determine whether the sample lies inside geometry or not.

Section B.1 contains the pseudocode for our SSAO implementation, which was
based on information provided by Chapman, 2011.

2.7.3 Sample Kernel Generation

For generating a good set of samples inside a hemisphere, especially when the sample
count is low, we decided to research a more sophisticated form of sampling which applies

2.7 SSAO: Theory of Operation 25

a weighting such that the sample is more likely to appear near to the normal of the
hemisphere. This is because occluders located near the top of the aligned hemisphere
should have more of an occluding effect than objects located to the sides.

The method we thought would be most suitable is known as Malley’s method, or
cosine-weighted hemisphere sampling (Pharr and Humphreys, 2010). It helps give a
better distributed sample set by sampling a 2D unit disc in a cosine-weighted fashion,
and then projecting the samples up to the surface of the hemisphere.

As the number of samples has a direct impact on performance, we will be investig-
ating different sizes of sample kernel and how they perform, both visually and in terms
of rendering time.

2.7.4 Noise Reduction with Blur Filter

When calculating the SSAO values for each pixel, we will experience noise as a result
of using lower sample counts. To alleviate this, we apply a simple blur algorithm that
averages surrounding SSAO pixels. This process is done in a separate rendering pass
in our pipeline, taking the SSAO stage as input, and producing a blurred texture as
output. Figures 2.14a and 2.14b show the improvement in softness when blurring a
scene with 8 samples. As ambient occlusion is meant to produce soft shadows, the
blurring process helps to achieve this.

We used a simple blurring algorithm which is applied to every pixel of the SSAO
pass output (Chapman, 2011). We sample a number of pixels around the current pixel
and find their average, and the area of pixels processed in this way is the same size
as our rotation vector texture, which should help minimise any repetition-induced
patterns or artifacts in the final output. Section B.2 contains the pseudocode for the
blur pass.

26 Background Research

(a) No blur applied - notice the “grainy” appearance due to noise.

(b) Blur applied - less grainy and softer shadows.

Figure 2.14 Comparison of SSAO before and after blur.

Chapter 3

Implementation

In this chapter, we will detail the architecture of our implementation and how it was
developed. We will discuss the tools and technologies chosen along with the reasons
for doing so, as well as the challenges faced and overcome during development.

3.1 High-Level Architecture Overview

We implemented a mock “game engine” to act as a graphics framework for our SSAO
implementation. This software project will feature the minimum required core com-
ponents of a typical game engine for implementing a deferred 3D rendering pipeline
capable of supporting the hemispherical SSAO algorithm.

Figure 3.1 shows a high-level view of how the software project is structured. The
software is broken down into a number of components, some of which consist of our
own code, and some of which are third-party libraries which help us interact with our
target platforms.

3.2 Hardware Platforms and Operating Systems

We decided to choose hardware platforms that are both commonplace and capable
of supporting the techniques we wanted to implement. The decision was made to
target previous-generation hardware as a minimum requirement, so that performance
comparisons could be made between older and more current hardware.

28 Implementation

Operating System
(Microsoft Windows, Android)

Graphics Abstraction Layer
(OpenGL 3.3, OpenGL ES 3.0)

Input/Output Abstraction Layer
(SDL 2.0)

Game Engine

Renderer File I/O System Human Interface
System

Hardware
(GPU, Mouse, Keyboard, Touchscreen)

Figure 3.1 Diagram showing the high-level architecture of the project.

Two main categories of hardware were chosen to be targeted by the project, PC and
smartphone/tablet. The PC and smartphone, when combined, represent over half the
market share in video games platforms - about 54% in 2016 according to McDonald,
2017, hence they are important platforms for us to consider.

Within the PC category, the vast majority of video games are played under the
Microsoft Windows operating system with a Direct3D 10 (or greater) compatible
GPU (Steam, 2017). Direct3D is the graphics abstraction layer used exclusively
under Microsoft platforms, but we opt for a similarly-capable version of the OpenGL
abstraction layer which exists on other platforms as well as Windows. This allows our
graphics code to be shared between PC and smartphone/tablet and thus compared
like-for-like (we discuss this further in Section 3.4).

For the smartphone/tablet category, the Android operating system was found to
be used on over 81% of smartphones sold in 2016 according to Gartner, 2017. The
minimum version of Android we can target is version 4.4 (also known as “KitKat”)
because it is the first version of Android to support the kind of deferred graphics
rendering we want to implement via. OpenGL ES version 3.0. According to Google,
2017, over 88% of Android devices are running version 4.4 of the operating system or
greater, so we end up supporting the majority of Android devices in use at the time of
writing.

3.3 Programming Language and Middleware 29

An additional reason for choosing these platforms is that the development tools
required in order to target them are freely available and easy to obtain from the vendors’
websites (Microsoft Visual Studio and the Android Software Development Kit/Native
Development Kit respectively).

The following devices were available to the author for testing. Devices marked with
a “*” were available for more in-depth testing with a GPU debugger - we will discuss
this in Section 3.9.

CPU GPU RAM OS
Custom PC (2011)* Intel Core i7 920 NVIDIA GeForce GTX580 6GB Windows 10
MacBook Pro (2013)* Intel Core i7 4558U NVIDIA GeForce GT750M 16GB Windows 10 (Boot Camp)

Table 3.1 Table of PC-class hardware used for testing.

CPU GPU RAM OS
Tesco Hudl 2 (2015) Intel Atom Z3735D Intel HD Graphics (Bay Trail-T) 2GB Android 5.1 “Lollipop”
Samsung Galaxy S6 Edge (2015) Samsung Exynos 7 Octa 7420 ARM Mali T760 MP8 3GB Android 7.0 “Nougat”
OnePlus 3 (2016)* Qualcomm Snapdragon 820 Qualcomm Adreno 530 6GB Android 7.1.1 “Nougat”
OnePlus 3T (2016) Qualcomm Snapdragon 821 Qualcomm Adreno 530 6GB Android 7.1.1 “Nougat”
HTC 10 (2017) Qualcomm Snapdragon 820 Qualcomm Adreno 530 4GB Android 7.0 “Nougat”

Table 3.2 Table of smartphone/tablet-class hardware used for testing.

3.3 Programming Language and Middleware

The C++ programming language was chosen for the implementation as it allows a vast
amount of middleware relevant to our project to be used. It also offers the programmer
the ability to access the underlying system at a lower level than is possible in managed
languages that run in a virtual machine such as Java or C#.

The language offers no automatic memory management or garbage collection as
found in Java and C#, which raises the difficulty of implementation. However, the
advantage to us is that the runtime performance is more deterministic as we have
more precise control over resource management. These are also some of the reasons
the C++ language is used within the video games industry, as high performance and
deterministic memory management is important for real-time simulations, especially on
platforms with limited memory and processing power such as consoles and smartphones.
As our project is trying to determine an algorithm’s suitability for use in video games,
it makes sense to use the programming language that the games industry prefers.

30 Implementation

Under Microsoft Windows, we can use Microsoft Visual Studio to compile C++
code and produce an executable application. To do the same for Android, we use the
Android Native Development Kit, or NDK. Android applications are normally written
in Java and use the Java frameworks provided by the operating system, however
the platform also allows “native” C and C++ code to be integrated into a project.
The NDK comprises a cross-compiler targeting the CPU architectures found inside
Android devices (usually ARM but occasionally Intel x86) as well as programming
interfaces that allow us to access the graphics abstraction layer, human interface devices
(touchscreen) and other features of the device.

For Android, a thin Java wrapper is used to allow the application to be launched like
a regular Java Android app. The wrapper handles the proper loading and initialisation
of our C++ code and middleware, then hands control over to the C++ code. The
application then behaves just like it does in our Windows PC version.

The middleware chosen for the project had to satisfy the following requirements:

• Support both of our target platforms.

• Interface with a programming language that can also target both of our platforms.

• Allow as much code as possible to be shared between both platforms such that
we can compare the results like-for-like and avoid implementing the same code
twice.

3.4 Graphics Abstraction Layer

The purpose of the graphics abstraction layer is to remove the need for the programmer
to understand all of the nuances and hardware-specific behaviours of the GPU, and
provide a standard interface for sending instructions to it. This means that the
rendering code within the application will be able to run on any GPU which supports
the abstraction layer.

The abstraction layer is designed to expose as much of the GPU’s functionality as
possible through a standard set of publicly-accessible functions and data formats. This
is known as an application programming interface, or API.

Some examples of graphics abstraction layers include Microsoft Direct3D, OpenGL,
Glide, and recently Vulkan. In order for them to work, the GPU manufacturer must

3.5 Input/Output Abstraction Layer 31

supply a driver that implements them. The driver converts the requests sent to the
abstraction layer by the application software into GPU-specific commands which are
generally kept private by the manufacturer and are unique to the GPU architecture.

We have chosen OpenGL (Open Graphics Library) and its mobile counterpart,
OpenGL ES (OpenGL for Embedded Systems). OpenGL ES is used for small devices
such as smartphones and tablets, and is modelled on regular OpenGL used on the
PC, albeit with reduced functionality to reflect the lesser capabilities of mobile GPUs.
Whilst the two are considered separate standards, with care, code can be authored
that works on both with very few changes.

OpenGL and OpenGL ES allow us to compile and execute code on the GPU by
using shaders, and it defines a shader language called GLSL which describes the syntax,
functions, and capabilities. Like OpenGL and OpenGL ES, there exist many versions
of GLSL with different levels of functionality, and each release of OpenGL (ES) has a
matching version of GLSL (ES).

We found that OpenGL version 3.3 and OpenGL ES version 3.0 were the lowest
versions of both APIs that supported our approach to deferred rendering, and had the
most in common with their shader languages. Whilst OpenGL 3.0 on the PC could
certainly support our project, we would have had to supply a separate set of shader
code with slightly different syntax for the smartphone version.

OpenGL 3.3 is also supported on the first PC GPUs which supported Direct3D 10
(the NVIDIA GeForce 8 series and the ATI Radeon HD 2000 series), which means
that according to Steam, 2017, we can support over 96% of PCs used for playing video
games as of March 2017.

3.5 Input/Output Abstraction Layer

The input/output (I/O) abstraction layer gives us a common interface for reading
and writing files from disk, and receiving input from the user by means of mouse and
keyboard on the PC, or touchscreen on the smartphone or tablet. Like the graphics
abstraction layer, this removes the need for the programmer to understand and write
platform-specific code for accessing these features of the underlying operating system.

We require disk I/O for reading in 3D assets and textures for our renderer to
draw for us, as well as the shader code which gets compiled and sent to the GPU at
runtime by our graphics abstraction layer. The paths used for finding our assets differs

32 Implementation

between Windows and Android - under Windows we can simply look underneath the
subdirectories where our application executable is located. Under Android, things are
slightly more complicated as our assets are compressed inside the application bundle
(known as an Android Package Kit or APK) to save disk space on the mobile device.
To access them, we would normally need to use Android ’s system APIs to locate and
decompress them.

The Simple DirectMedia Layer or SDL is a cross-platform middleware that provides
an I/O abstraction layer for Windows, Android, and many other operating systems.
With it, we can write the code that loads our assets once, and have it work on any
operating system supported by SDL. Hence, our File I/O system within the project
uses SDL for all operations where files are loaded from disk, and under Android it
transparently takes care of locating and decompressing them for us.

SDL also provides a standard API for receiving human input from the user. In
our project, we use this to allow the user to look around and move within the virtual
environment using a mouse and keyboard, or touchscreen. We also allow the user to
control the parameters of the SSAO algorithm using the keyboard or touchscreen in
order to see the effects and measure the impact it has on performance. Again, this
allows us to use the same programming interface for receiving and processing input
events on both of our target platforms.

3.6 Cross-Platform Game Engine

With the hardware, operating systems, abstraction layers and programming language
decided upon, we have all of the critical components required to implement a game
engine. Although we won’t actually be implementing a game, we still refer to the
software as a game engine as it contains a lot of the core functionality that would
be seen in a typical game. We use the term “cross-platform” because our abstraction
layers allow the engine to run on more than one platform.

The game engine is the part that we implement ourselves in the project, and it
carries out the following tasks:

• Provides a test-bed for implementing and profiling our SSAO algorithm.

• Represents the software that would be used at the heart of a typical video game.

3.7 Deferred Rendering Pipeline with SSAO 33

• Initialises the platform’s resources (GPU, file I/O, human interface) and gains
access to them.

• Loads in our 3D assets and GPU programs (shaders) from disk and prepares
them for use.

• Sets up our deferred rendering pipeline.

• Enters a loop of processing user input, updating the “game world” accordingly,
rendering the 3D scene, and presenting the results to the user.

• Cleanly shuts down and releases any resources that were used at runtime when
the user wants to exit the program.

3.7 Deferred Rendering Pipeline with SSAO

In Section 2.6, we discussed deferred rendering pipelines and how we can extend them
to include additional processing before calculating the final lighting for a scene. In
Figure 3.2, we show how we have added the SSAO and SSAO blur stages into our own
rendering subsystem within the game engine. The rendering pipeline consists of four
individual passes. For testing purposes and profiling, the SSAO and blur passes can be
disabled so that we can measure the impact they have on rendering performance.

The renderer exposes the following features through the game engine:

• Renders geometry with albedo to G-buffer.

• Can toggle SSAO on/off.

• Can toggle SSAO blurring on/off.

• Allows you to change the number of SSAO samples to 4, 8, 16, 32, 64, or 128.

• Allows you to set the SSAO sampling radius.

• Can visualise the three textures of the G-buffer (position, normal, albedo) indi-
vidually.

• Can visualise the SSAO component individually.

• Performs a lighting pass which illuminated the scene with 4 coloured lights using
Phong shading, whilst also integrating the SSAO component.

34 Implementation

• Can display the performance in frames-per-second averaged over the last 10
frames.

3.8 3D Assets Used for Testing

We decided that it would be beneficial to have the game engine load in an interesting
and reasonably complex 3D scene for the following reasons:

• It would allow us to see how the SSAO algorithm behaves on various irregular
shapes and surfaces.

• It would, to some extent, simulate what a typical video game might present to
the player as one of its stages.

• A more complex scene would cause any errors or flaws in our SSAO implementation
to be made more obvious.

The data we chose to use is a scene called the “Sponza” and was originally authored
by engineers at Crytek. The scene depicts the atrium of the Sponza Palace in Dubrovnik,
Croatia. The 3D geometry data and textures have been placed into the public domain
for the benefit of the graphics research community by its authors. It gives us a
reasonably complex set of data to work with, consisting of 262,267 triangles and several
high-resolution textures. We have used an updated version distributed by McGuire,
2011 which includes some corrections to the original Crytek release.

3.9 Renderer Profiling Procedure

We used two methods for measuring rendering performance. The first is a basic
test which simply allows the renderer to run as fast as possible and measuring how
many frames-per-second (FPS) we can achieve with various settings. This test can be
performed on any machine capable of running our game engine, however it does not
give us the full picture of how each pipeline stage is performing individually.

In order to drill down into the rendering pipeline and measure the performance
at each stage accurately, we had to think carefully about the strategy we would use.
Sending rendering commands to a GPU is often performed asynchronously or in batches

3.9 Renderer Profiling Procedure 35

GPUCPU

Game Engine
(Sends geometry
vertices to GPU)

Vertex Transform -
model-space to

view-space AND
clip-space

(Vertex Shader)

Write view-space
data to G-Buffer

(Fragment Shader)

Position AlbedoNormal

First Pass
(Geometry)

Game Engine
(Sends full-screen

quad vertices to GPU)

Vertex Transform -
Model Space to

Clip Space
(Vertex Shader)

Calculate SSAO
and write
to texture

(Fragment Shader)

Position Normal

Second Pass
(SSAO)

Sample
Kernel

Rotation
Texture

Game Engine
(Sends full-screen

quad vertices to GPU)

Vertex Transform -
Model Space to

Clip Space
(Vertex Shader)

Blur SSAO and
write to texture

(Fragment Shader)

Third Pass
(Blur)

Game Engine
(Sends full-screen

quad vertices to GPU)

Vertex Transform -
Model Space to

Clip Space
(Vertex Shader)

Lighting Calculations;
sampling G-buffer
and blurred SSAO

Fourth Pass
(Lighting)

Position Normal

SSAO

SSAO

Albedo Blurred
SSAO

Blurred SSAO

Screen Output

Figure 3.2 The 4-pass SSAO deferred rendering pipeline used in the project.

36 Implementation

by the GPU driver and/or the graphics abstraction layer. This non-determinism means
that the traditional method of recording the wall clock time at two points within our
code and finding the difference between them will not necessarily give us a meaningful
result.

Instead, we can use specialist tools provided by the GPU vendor to retrieve more
accurate timing information, because they have inside knowledge about how the
implementation works, and can control what the driver is doing internally.

Our target PCs use NVIDIA-manufactured GPUs, so we can use NVIDIA Nsight -
a GPU debugging tool which has comprehensive profiling features - to measure the
performance of our renderer. Our Android smartphone’s GPU is manufactured by
Qualcomm, who provide the Snapdragon Profiler for debugging and profiling GPU
code on devices using this family of hardware.

These tools allow us to run the program and capture a rendered frame. The capture
data includes timings for all of the instructions the GPU has received, and we can get
a good idea of how well our renderer is performing.

The vendor-specific and specialist nature of this method limits our ability to collect
accurate measurements to devices which we are able to spend extra time with and
install the debugging tools on (i.e. in our possession). However we were able to collect
FPS data for a variety of other devices from willing participants.

Measurements were taken with the software compiled in “Release” mode for max-
imum performance (compiler optimisations enabled).

The procedure for performing a basic FPS test was as follows:

1. Run the program, and leave the camera in its initial position (avoid looking
around). Leave SSAO and blur enabled.

2. Note the current SSAO sample level, and the value on the on-screen FPS counter.

3. Repeat the recording of FPS values for each SSAO sample setting until all six
levels have been tested.

When using GPU debuggers, it is sometimes difficult to see which draw calls
correspond to the stages of the deferred renderering pipeline. We decided to simplify
the process by measuring the differences in frame timings when enabling and disabling
SSAO and blur, and combined the geometry and lighting passes into one measurement.

The method used for each debugger was as follows:

3.9 Renderer Profiling Procedure 37

1. Run the program, and leave the camera in its initial position (avoid looking
around). Leave SSAO and blur enabled.

2. Note the current SSAO sample level, and use the GPU debugger to capture 50
frames.

3. Use the debugger’s timeline features to determine the frame time in microseconds
for the geometry, SSAO, blur, and lighting passes, averaged over a number of
frames (we used 50):

• NVIDIA Nsight : Perform a capture with SSAO and blur disabled, then note
the GPU Duration recorded by the debugger to use as a baseline. Then,
for each SSAO sample count, perform a capture with only SSAO enabled,
and then with both SSAO and blur enabled. Use the differences between
each set of timings to determine how long the SSAO and blur stages took
on average, per frame.

• Qualcomm Snapdragon Profiler : Perform a capture for each level of SSAO
with and blur enabled. Look at the timeline to see when “rendering surfaces”
are changed - these surface durations correspond to the durations of each of
the 4 pipeline stages.

Chapter 4

Results and Evaluation

In this chapter, we present the measurements collected during the testing of our SSAO
implementation and discuss the results. We also provide an evaluation, referring to
our original objectives to determine whether we were successful in achieving our aim.

4.1 PC-Class Hardware

Two machines were tested in this category. The first, a custom-built gaming PC built
in 2011, with an NVIDIA GeForce GTX 580, which was a high-end gaming GPU at the
time of release. The second, a MacBook Pro from Apple, which is a laptop computer
manufactured in late 2013. The MacBook Pro is equipped with an NVIDIA GeForce
GT 750M, which is a GPU better suited to lighter tasks such as computer-aided design
and video production work as opposed to gaming.

4.1.1 Frame Timings

Figures 4.1 and 4.2 show frame timings in microseconds for our SSAO renderer when
run on our Custom PC and MacBook Pro respectively. The first thing that we notice
is that the performance of the SSAO stage decreases in a linear fashion as we increase
the number of samples - in other words, doubling the number of samples approximately
doubles the time taken to complete the SSAO pass. Referring back to Section 2.7, this
reinforces our statement about the time complexity being O(pixels × samples).

40 Results and Evaluation

When the samples are restricted to only 4 or 8, we can see that the combined
SSAO and blur passes only add between 1-2 milliseconds to the total rendering time on
our 2011-spec Custom PC, and 3-5 milliseconds on the MacBook Pro which suggests
that the algorithm in this configuration is quite efficient, even on older generation or
low-end hardware.

With the jump from 64 to 128 samples on the Custom PC (or above 8 samples on
the MacBook Pro), we begin to experience a perceivable slowdown in the rendering
performance. This is because we begin to exceed the 1

60
th of a second budget for giving

our 60Hz monitor a new graphics frame in time for the next screen refresh. This
suggests we are saturating the available memory bandwidth of the GPU - 128 iterations
of G-buffer read operations (fetches) for every pixel incurs a severe performance penalty.

In Section 4.3, we notice that using higher sample counts yield diminishing returns
after a certain point, so it doesn’t make sense to use them in a real application.

We notice a possible area for improvement here - the blur stage, which seems to be
quite expensive compared to the other stages, especially at 4 and 8 samples. We suggest
that our blur algorithm is not very efficient because it is quite a basic implementation
which duplicates its own work. Whilst it has the effect we desire, further research into
blur algorithms could yield even better overall performance.

It is important to note two things:

• The MacBook Pro’s GPU is a mid-range laptop GPU, hence the significantly
lower performance compared to a high-end desktop GPU, despite the latter being
older.

• The use of NVIDIA Nsight to record detailed frame timings has a performance
penalty, hence real-world performance without a debugger attached is slightly
better, as shown in the simple FPS measurements in the following section.

4.1 PC-Class Hardware 41

Figure 4.1 Chart showing frame timing results for our 2011 Custom PC.

Figure 4.2 Chart showing frame timing results for our 2013 MacBook Pro.

42 Results and Evaluation

4.1.2 Frames Per Second

Figure 4.3 shows how FPS compares between our two PCs. We decided to try two
screen resolutions on the MacBook Pro - its native “Retina” 2880x1800 resolution, as
well as the 1920x1080 resoultion we are using for the Custom PC. Here, the screen-space
nature of the algorithm is very evident as the increased number of pixels has a direct
impact on SSAO performance. Using the high resolution on the MacBook Pro for SSAO
rendering is not a very realistic option, as the performance suffers greatly, however
1920x1080 is a commonly-used resolution for gaming and the results for the lower
sample counts are very good.

On the Custom PC, using any number of samples between 4 and 64 inclusive results
in a fast and fluid experience, with the FPS remaining well above the 60 FPS (monitor
refresh rate) target. With the MacBook Pro, staying within 4 and 8 samples yields the
best results, although using 16 samples still gets us very close to the target at 57.5
FPS.

Given that the MacBook Pro is not a machine intended for gaming, its performance
in this test is more than acceptable. What is most important is that the Custom PC,
despite having an older-generation GPU, yields excellent performance, with SSAO still
leaving a lot of headroom for further rendering effects and other game engine tasks.
We are confident that newer GPUs will have no issues dealing with SSAO at higher
resolutions and sample counts.

4.2 Smartphone/Tablet-Class Hardware 43

Figure 4.3 Chart showing frames-per-second results for our PCs.

4.2 Smartphone/Tablet-Class Hardware

For the smartphone/tablet tests, we were only able to obtain frame timing measurements
for one device using a GPU debugger. The OnePlus 3, released in early 2016, is
considered a high-end smartphone and contains a very capable GPU for such a device -
the Adreno 530 from Qualcomm.

4.2.1 Frame Timings

The smartphone’s frame timing pattern looks similar to what we saw earlier on the
PCs. Interestingly, there is only a small relative increase in the SSAO stage duration
between 4 and 8 samples. It is difficult to say whether this is error in measurement
(the overheads of attaching a debugger) or perhaps there is the implicit overhead of
having a deferred renderer instead of a simpler forward renderer.

44 Results and Evaluation

Nevertheless, the results are very impressive for a smartphone, given that the
device’s GPU only has a fraction of the power and memory bandwidth of a PC. We
notice the same relatively high duration of the blur stage as we saw on the PC, so an
optimised blur algorithm could be helpful again.

Figure 4.4 Chart showing frame timing results for our OnePlus 3 smartphone.

4.2.2 Frames Per Second

For our FPS test, we had access to a variety of new and previous-generation smartphones,
and a tablet.

An interesting problem with the latest smartphones is that they often come equipped
with a very high resolution screen, to improve the user’s text-reading experience on
physically-small devices. This poses a problem for rendering 3D graphics, as we have
several thousands more pixels to compute than in earlier devices. The Galaxy S6 Edge
is an example of a device whose rendering performance suffers as a result of its high
screen resolution, as can be sen in Figure 4.5.

4.2 Smartphone/Tablet-Class Hardware 45

The HTC 10 is a device whose manufacturer appears to have acknowledged this
problem, and provided a workaround. Traditionally, smartphones do not have settings
available to the user for lowering their screen resolution as found on PCs. The HTC
10 comes with an app called Boost+, which features an option to lower the screen
resolution to 1920x1080 when playing games.

We decided to test this option with our SSAO renderer, and as we can see in Figure
4.5, the HTC 10 benefits from a significant speed increase after lowering the screen
resolution. This echoes our findings when we compared higher and lower resolutions
on the MacBook Pro.

Figure 4.5 Chart showing frames-per-second results for our smartphones/tablets.

The Tesco Hudl 2 is a budget tablet from 2015, and its performance is poor even
without SSAO enabled, which might be explained by its GPU architecture not being
designed with deferred rendering in mind. It is one of the earliest devices to support
OpenGL ES 3.0. However, its results serve to show the dramatic improvement in
mobile GPU technology between 2015 and the present day.

None of the sample kernel settings allow any of our tested mobile devices to achieve
over 60 FPS with SSAO enabled at the present time, but overall, the results are very

46 Results and Evaluation

promising for future devices. 40 FPS remains an arguably acceptable frame rate,
especially for smartphone-based games, so the 60 FPS target should be achievable
within the next few generations of mobile GPU.

4.3 Visual Quality

Figure 4.6 shows the effect of SSAO on an irregular object, using 4 and 16 samples.
The soft shadows in both cases offer a pleasant additional sense of depth to the image,
and the concave areas of the lion object are shaded darker as we would expect. There
is a clear distinction between the wall and the lion, and the arch near the top of the
scene has gained a shadow in the corner.

The difference between 4 and 16 samples is subtle at first, but looking closely, we see
that the shadows in the 4-sample image appear more solid and less gradual compared
to the smooth fade of the 16-sample shadows. Ths is a consequence of undersampling,
which causes banding artifacts, however, improving how the 4 samples are distributed
will improve the appearance.

(a) No SSAO (b) 4 samples (c) 16 samples

Figure 4.6 Comparison of SSAO being applied to an irregular object.

Figure 4.7 shows the isolated SSAO component after blurring for 4 and 16 samples.
The undersampling artifacts are now much more obvious, especially on the surfaces
of the arches. This is likely to be a result of one of the samples being very close to

4.4 Summary 47

the base of the hemisphere, and rounding error of the depth buffer results in the pixel
being treated as occluded. This could be alleviated by carefully choosing the sample
positions or tuning the random sample generator. With 16 samples, the likelihood of
this occurring decreases, and the quality of the output is improved.

In Figure 4.8, we see the overall impact that SSAO has on the scene when looking
across the atrium of the Sponza. Of particular note are the soft shadows added
underneath the curtains and hanging tapestries, behind the planters, and under the
arches.

Further images can be found in Appendix A which show how the quality of SSAO
changes with the other sample counts. At 16 samples, the banding and noise artifacts
become almost unnoticeable and it becomes very difficult to tell the differences between
the higher sample counts. We find that 8 samples offers a good level of quality with our
sample generator whilst maintaining good performance. 4 samples can be acceptable if
the samples are well chosen.

4.4 Summary

In Section 1.2, we hoped that SSAO would have a significant improvement in visual
quality with a low performance impact. Our results suggest that our hypothesis has
held true, especially for hardware designed with video game performance in mind.
We are especially encouraged by the good performance on the latest smartphones.
With some ideas in mind about how we might improve the performance, we are
confident that SSAO is a technique well-suited for many platforms, including low-power
handhelds, and the predictable, linear performance scaling allows it to be tuned to suit
the capabilities of the taget platform’s GPU.

We propose that an SSAO kernel of 8 samples on desktop PC-class hardware is a
possible “sweet spot” for SSAO, providing a good balance of visual quality and perform-
ance. For those with high-end GPUs, 16 samples or higher might be implemented as
an “ultra detail” setting. On laptops or smartphones, 4 samples would make the most
sense with the current levels of performance we are seeing, however, if the samples are
chosen carefully and well distributed, the results can be difficult to distinguish from
higher sample counts. This is especially true given the lower physical screen size of
portable devices.

48 Results and Evaluation

(a) Blurred SSAO pass using 4 samples

(b) Blurred SSAO pass using 16 samples

Figure 4.7 Comparison of SSAO passes at 4 and 16 samples.

4.4 Summary 49

(a) SSAO disabled

(b) SSAO using 16 samples

Figure 4.8 Comparison of complete atrium scene with and without SSAO.

Chapter 5

Conclusions

In this chapter, we will bring the dissertation to a conclusion and reflect on what we
have learned as a result of carrying out this project. We also suggest some areas to
investigate for future researchers wanting to continue from where we left off.

5.1 Revisiting Our Original Goals

Our aim was to determine the suitability of a screen-space secondary lighting algorithm
for use in video games, by implementing it, profiling it, and commenting on how it
improves the visual fidelity of the rendered output.

We believe we have managed to stay true to this aim throughout the project. Our
graphics framework was successfully realised in the form of a mock game engine using
the programming language preferred by many programmers within the games industry.
We have successfully implemented the algorithm we chose, and shown that SSAO is
an excellent choice for adding extra detail and depth to a scene - largely because of
its predictable performance cost and independance of the complexity of the geometry
being rendered.

We were successful in bringing the test framework up on a second, less powerful
platform, and were able to profile it on a reasonably good selection of smartphones.
It would have been interesting to see the performance on state-of-the-art PC-class
hardware, but the author was unable to find suitable hardware in the time available.

The impact of our implementation on the rendering pipeline was successfully
measured on the hardware at our disposal, and were able to test the most important

52 Conclusions

tuning parameter (sample count). It would have been interesting to see if other
parameters could have any performance or visual impact, such as sample radius or
using other ways to generate sample sets.

5.2 What We Have Learned

In this project, we learned a lot about the inner workings of a deferred rendering
pipeline and why they are necessary to implement some of the more advanced rendering
techniques seen in video games. We learned about the idea of screen-space computations
and why they offer us predictable, linear-scaling performance.

We found the implementation of the algorithm to be challenging at first, but would
recommend it to any graphics programmer wanting to progress from forward rendering
to a more advanced deferred rendering pipeline, as it offers a reasonable learning curve
and instantly appreciable results. We enjoyed excellent visual quality of the output
and very encouraging performance numbers in our tests.

The most surprising and encouraging results we garnered from our investigation
are those of the smartphones. We did not expect the smartphones to perform as well
as they did due to their less powerful GPUs, energy-conscious CPUs, lower memory
bandwidth, and lower execution unit counts.

In 2007, Shanmugam and Arikan said: “The results show that our algorithm is best
suited for the upcoming and future hardware; we experience a worst-case frame-rate
of around 17 fps in a GeForce 8800 GTX which maps to about 3 FPS on a GeForce
7950 GX2.”. At the time, they were testing their algorithm on state-of-the-art desktop
PC hardware. Ten years later, we are observing very similar performance numbers
on a handheld smartphone, which is an exciting prospect and certainly puts the
advancements in GPU technology into perspective. For mobile devices, we would like
to echo the sentiments of Shanmugam and Arikan and suggest that SSAO is best suited
for current high-end devices and future devices.

5.3 Possible Improvements

In the previous chapter, we touched on the possibility of our choice of blur algorithm
being inefficient compared to the SSAO itself. If we were to revisit the project, we would
certainly want to compare alternatives, such as a separable Gaussian blur algorithm.

5.4 Future Work 53

This type of algorithm reduces computation complexity by performing a blur in one
axis in one pass, then blurring the other axis in a separate pass.

We also believe that careful choice of samples can greatly improve the quality of the
output for low sample counts, which is important for the devices which only perform
well at low sample counts. It may be a good idea to try hand-picking 4 hemisphere
samples instead of random generation.

It should be possible to reduce the GPU memory bandwidth consumed by the
renderer and increase performance by reducing the reliance on data in the G-buffer,
and in turn reducing the G-buffer’s size. For example, Pettineo, 2009 shows how one
can reconstruct a position in 3D space from existing depth data, removing the need to
have a position G-buffer.

5.4 Future Work

We propose the following suggestions for future work in the areas of SSAO and other
screen-space secondary lighting algorithms:

• Extend testing to other video gaming platforms such as consoles (Xbox One,
PlayStation 4, Nintendo Switch), and other smartphone/tablet platforms (iOS).

• Investigate performance on more current and upcoming GPUs, and look at visual
quality on 4K displays, or virtual reality headsets.

• Explore better/more efficient blur methods (separable Gaussian).

• Look into more sophisticated ambient occlusion effects (horizon-based ambient
occlusion).

• Investigate the implementation of other screen-space global illumination al-
gorithms such as those that approximate additional light “bounces”.

Glossary

2D/3D Two-dimensional, three-dimensional.

Albedo colour The colour of a surface or object before lighting calculations are
applied to it. Represents the object as if it were at full brightness. Sometimes
also known as the diffuse colour.

Ambient occlusion The process of calculating the amount of ambient light that a
point in 3D space is exposed to.

Application Programming Interface/API A standard set of functions and data
formats defining an interface through which a programmer can access the
functionality provided by a software library or piece of middleware.

Baking The process of encoding extra data (usually associated with lighting calcula-
tions) alongside the geometry data it applies to.

Clip-space The coordinate system in which all objects that remain inside it after
clipping will be visible on screen.

CPU Central processing unit

Culling The process of discarding unnecessary geometry data, usually because it has
been determined to outside the view frustum, or hidden behind other objects.

Deferred rendering A type of rendering in which lighting calculations are decoupled
from the geometry transformation stage(s), and left until a later stage in the
pipeline.

Depth buffer A memory buffer (usually in GPU memory) which holds depth data.

Depth data The depth (z) coordinate of the currently-frontmost fragment at a given
screen-space location.

56 Glossary

Depth testing The process of comparing a fragment’s depth data to that of the
current value for this screen-space position in the depth buffer. If the new
fragment is found to have a higher depth value at that position, it is hidden
behind the current fragment and can be discarded.

Direct light Light which travels directly from a light source to a point or surace.

Dot product A mathematical operation involving two vectors which returns a scalar
value. Also known as the scalar product.

Double buffering The technique of alternately drawing graphics to two framebuffers,
and swapping them in synchronisation with the monitor or television’s refresh
rate.

Forward rendering A simple type of rendering pipeline in which vertex data moves
through it from start to finish in one pass - directly forward.

Fragment A potentially visible piece of piece of rasterised geometry which may end
up becoming a visible pixel on the screen.

Fragment shader A program running on the GPU which processes and gives colour
to fragments.

Framebuffer A memory buffer which is large enough to hold an entire rendered frame
of graphics.

Game engine A piece of software which contains all of the subsystems required to
support the implementation of a game. Typically architectured such that it an
be reused for more than one game.

Geometry The data representation of one or more objects in the form of 3D polygons.

Geometry buffer/G-buffer A collection of buffers that store the results of a com-
plete geometry transformation pass in memory so that they can be quickly
looked-up later in lighting calculations.

Global illumination The family of algorithms that help simulate the physical beha-
viours of light.

GPU Graphics Processing Unit, a piece of hardware specialising in the fast rendering
of 3D graphics.

Glossary 57

Hardware acceleration The use of specialist or bespoke hardware to speed up
complex computations.

IBM PC International Business Machines Personal Computer.

Middleware Additional software, usually provided by a third-party, which lies between
our own software and the operating system and provides useful functionality.

Model-space The coordinate system in which 3D objects are usually designed, with
their Cartesian origin at the centre of the object.

Model/view/world matrix The mathematical matrices that allow the transforma-
tion of a set of coordinates from one coordinate system into another.

Normal data A vector which is perpendicular to a point or surface.

Normalised device coordinates The coordinate system in which all coordinates lie
between −1 to 1 in all axes. Obtained by applying the perspective divide to
coordinates in clip-space.

Occlusion factor A number between 0 to 1 representing how much ambient light has
been blocked from reaching a point or surface.

Orthographic projection A type of projection in which the distance of an object
from the viewing position has no effect on the object’s perceived size.

Perspective projection A type of projection in which objects appear to be smaller
the further away they are from the viewing position.

Phong shading A type of light surface shading model in which light reflection angles
are computed to determine the brightness of a point on a surface, based on
ambient light, the diffuse colour of the object, and the specular highlights on
the object (its “shininess”).

Pixels Picture elements, the smallest addressable units in a raster image, usually a
single coloured “dot” within the image.

Quad A rectangular graphics construct, usually made up of two triangles.

Rasterisation The process of converting 3D objects into arrays of shaded pixels
suitable for viewing on the 2D surface of a monitor or television.

58 Glossary

Raytracing An expensive, yet more physically accurate type of rendering in which
“rays” of light are followed through the scene from the viewing position, and
their interaction with objects in the 3D world is simulated as they bounce from
one surface to another.

Render farm A large group of high-performance computers dedicated to the task of
rendering frames of computer-generated graphics in film production.

Rendering pipeline A sequence of rendering stages in which data is acted on, then
passed to the next stage for further processing.

Sample kernel An array of randomly-generated 3D points around a unit sphere or
hemisphere, used for sampling positions around a point in 3D space to determine
an approximate ambient occlusion factor.

Screen-space The domain in which geometry data guaranteed to be associated with
the final screen output exists.

Screen-space ambient occlusion The process of calculating an approximation of
ambient occlusion using only data in screen-space.

Secondary lighting Light which has experienced at least one reflection or bounce,
and has not travelled directly from the source to a point or surface (also known
as indirect lighting).

Shadow mapping The technique of generating shadows by rendering the scene from
the point of view of a light source, and mapping the silhouette of an object onto
a texture which can be used to simulate a shadow being cast by the object.

Tangent-space The coordinate system in which positions are relative to the surface
of an object.

Tangent/bitangent In tangent space, the axes which define the two-dimensional
surface plane.

TBN matrix A mathematical matrix used for transforming a position from tangent
space to some other coordinate system.

Transforms Operations performed on vertices to relocate them or move them from
one coordinate system to another. Transforms can include translation, rotation,
and scaling operations.

Glossary 59

Undersampling An undesirable effect caused when insufficient sampling has taken
place.

Vertex shader A program running on the GPU which processes and transforms
geometry data (vertices).

Vertices Positions or points in 2D or 3D space, usually represented by their x, y, and
z coordinates.

View frustum A volume representing the region of interest (visible region), defined
by a projection matrix.

View-space The coordinate system in which objects are positioned relative to where
they are being viewed from.

World space The coordinate system in which objects are positioned where they are
located within the 3D world.

References

Chapman, J. (2011). SSAO Tutorial. Retrieved November 5, 2016, from http://john-
chapman-graphics.blogspot.co.uk/2013/01/ssao-tutorial.html

Christensen, P. H. (2002, April). PhotoRealistic RenderMan Application Note #35:
Ambient Occlusion, Image-Based Illumination, and Global Illumination. Pixar.

Filion, D. & McNaughton, R. (2008). StarCraft II: Effects & Techniques. In ACM
SIGGRAPH 2008 Games (pp. 133–164). SIGGRAPH ’08. Los Angeles, California:
ACM. doi:10.1145/1404435.1404441

Gartner. (2017). Gartner Says Worldwide Sales of Smartphones Grew 7 Percent in
the Fourth Quarter of 2016. Retrieved April 20, 2017, from http://www.gartner.
com/newsroom/id/3609817

Google. (2017). Dashboards. Retrieved April 20, 2017, from https://developer.android.
com/about/dashboards/index.html

Herlihy, M. & Shavit, N. (2008). The art of multiprocessor programming. (p. 14). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Leather, A. (2009, December). Crysis - did you upgrade? Retrieved April 19, 2017,
from https://www.bit-tech.net/blog/2009/12/15/crysis-did-you-upgrade/

McDonald, E. (2017). The Global Games Market Will Reach $108.9 Billion In 2017
With Mobile Taking 42%. Retrieved April 20, 2017, from https://newzoo.com/
insights/articles/the-global-games-market-will-reach-108-9-billion- in-2017-
with-mobile-taking-42/

McGuire, M. (2011). Computer Graphics Archive. Retrieved April 10, 2017, from
http://graphics.cs.williams.edu/data

Miller, G. (1994). Efficient algorithms for local and global accessibility shading. In
Proceedings of the 21st annual conference on computer graphics and interactive
techniques (pp. 319–326). SIGGRAPH ‘94. New York, NY, USA: ACM. doi:10.
1145/192161.192244

http://john-chapman-graphics.blogspot.co.uk/2013/01/ssao-tutorial.html
http://john-chapman-graphics.blogspot.co.uk/2013/01/ssao-tutorial.html
https://dx.doi.org/10.1145/1404435.1404441
http://www.gartner.com/newsroom/id/3609817
http://www.gartner.com/newsroom/id/3609817
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://www.bit-tech.net/blog/2009/12/15/crysis-did-you-upgrade/
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/
http://graphics.cs.williams.edu/data
https://dx.doi.org/10.1145/192161.192244
https://dx.doi.org/10.1145/192161.192244

62 References

Mittring, M. (2007). Finding next gen: CryEngine 2. In ACM SIGGRAPH 2007 courses
(pp. 97–121). ACM.

NVIDIA. (2017). Compare 10 series graphics cards. Retrieved April 19, 2017, from
https://www.nvidia.com/en-us/geforce/products/10series/compare/

NVIDIA. (2013). Enabling ambient occlusion in games. Retrieved April 21, 2017, from
http://www.geforce.com/whats-new/guides/ambient-occlusion#1

Owens, B. (2013). Forward rendering vs. deferred rendering. Retrieved April 21, 2017,
from https://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-
deferred-rendering--gamedev-12342

Pettineo, M. (2009). Scintillating snippets: Reconstructing position from depth. Re-
trieved April 29, 2017, from https://mynameismjp.wordpress.com/2009/03/10/
reconstructing-position-from-depth

Pharr, M. & Humphreys, G. (2010). Physically Based Rendering, Second Edition: From
Theory To Implementation (2nd). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Phong, B. T. (1975). Illumination for computer generated pictures. Commun. ACM,
18 (6), 311–317. doi:10.1145/360825.360839

Shanmugam, P. & Arikan, O. (2007). Hardware accelerated ambient occlusion techniques
on GPUs. In Proceedings of the 2007 symposium on interactive 3D graphics and
games (pp. 73–80). I3D ‘07. Seattle, Washington: ACM. doi:10.1145/1230100.
1230113

Shopf, J. (2008, February). 2007: The year SSAO broke. Retrieved April 19, 2017, from
https://levelofdetail.wordpress.com/2008/02/10/2007-the-year-ssao-broke/

Steam. (2017). Steam Hardware & Software Survey: March 2017. Retrieved April 20,
2017, from http://store.steampowered.com/hwsurvey/

https://www.nvidia.com/en-us/geforce/products/10series/compare/
http://www.geforce.com/whats-new/guides/ambient-occlusion#1
https://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-deferred-rendering--gamedev-12342
https://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-deferred-rendering--gamedev-12342
https://mynameismjp.wordpress.com/2009/03/10/reconstructing-position-from-depth
https://mynameismjp.wordpress.com/2009/03/10/reconstructing-position-from-depth
https://dx.doi.org/10.1145/360825.360839
https://dx.doi.org/10.1145/1230100.1230113
https://dx.doi.org/10.1145/1230100.1230113
https://levelofdetail.wordpress.com/2008/02/10/2007-the-year-ssao-broke/
http://store.steampowered.com/hwsurvey/

Appendix A

Screenshots

The following pages contain some larger, landscape screenshots from our SSAO renderer
demonstration application.

64 Screenshots

Figure A.1 Screenshot of our SSAO demo application, with SSAO disabled.

65

Figure A.2 As in Figure A.2, but with 16-sample SSAO enabled.

66 Screenshots

Figure A.3 The G-buffer visualisation feature showing (clockwise from top left, with image
correctly oriented) the position buffer, normal buffer, SSAO pass, and albedo buffer.

67

Figure A.4 SSAO pass - 4 samples. Note the “banding” around the arches due to under-
sampling.

68 Screenshots

Figure A.5 SSAO pass - 8 samples. Banding is still present, but greatly reduced.

69

Figure A.6 SSAO pass - 16 samples. Banding has almost disappeared.

70 Screenshots

Figure A.7 SSAO pass - 32 samples. The differences between this and the next two sample
counts are now much less perceivable.

71

Figure A.8 SSAO pass - 64 samples.

72 Screenshots

Figure A.9 SSAO pass - 128 samples.

Appendix B

Pseudocode

The following pseudocode listings show our implementation of the SSAO and blur
passes within our deferred rendering pipeline. In our project, they are implemented as
GLSL fragment shaders.

74 Pseudocode

B.1 Computing Hemispherical SSAO

1 Inputs: GBufferPositions[][]

2 GBufferNormals[][]

3 SSAOSampleKernel[]

4 RotationTexture[]

5 SphereRadius

6 ProjectionMatrix

7
8 Outputs: SSAOTexturePixels[][]

9
10 Procedure SSAOHemispherical:

11 {

12 ForEach Pixel in SSAOTexturePixels:

13 {

14 // Retrieve our view space positions, normals and a random

15 // rotation vector from their respective textures

16 Let viewPosition = GBufferPositions[Pixel.x][Pixel.y];

17 Let viewNormal = GBufferNormals[Pixel.x][Pixel.y];

18 Let randomVector = RotationTexture[Pixel.x modulo RotationTexture.width]

19 [Pixel.y modulo RotationTexture.height];

20
21 // Construct a TBN matrix (Gram-Schmidt process) to re-orient hemisphere

22 // samples with respect to view space normal, and also apply the random

23 // rotation from our noise texture

24 Let tangent = randomVector -

25 viewNormal * DotProduct(randomVector, viewNormal);

26 Let bitangent = CrossProduct(viewNormal, tangent);

27 Let tbnMatrix = Matrix3x3(tangent, bitangent, normal);

28
29 // Accumulate occlusion samples

30 Let occlusionFactor = 0.0;

31 ForEach SSAOSample in SSAOSampleKernel:

32 {

33 // Reorient sample

34 Let reorientedSample = tbnMatrix * SSAOSample;

35
36 // Move it relative to our view space position

37 Let reorientedSample = viewPosition + reorientedSample * SphereRadius;

38
39 // Take sample from view space to clip space (project it)

40 Let gBufOffset = ProjectionMatrix * Vector4(reorientedSample.xyz, 1.0);

41
42 // Apply perspective divide

43 Let gBufOffset.xyz = gBufOffset.xyz / gBufOffset.w;

44
45 // After projection, x/y/z range is between -1 and 1

46 // (centre of view frustum is {0, 0, 0})

47 // Transform range to 0 to 1 to put it into texture coordinate range

48 Let gBufOffset.xyz = gBufOffset.xyz * 0.5 + 0.5;

49
50 // Now get the depth component at this sample position

51 Let sampleDepth = GBufferPositions[gBufOffset.x][gBufOffset.y].z;

52
53 // Positive z is deeper into the world

B.2 Computing Blur 75

54 If sampleDepth >= reorientedSample.z:

55 {

56 // Sample is inside geometry; increase occlusion factor

57 Let occlusionFactor = occlusionFactor + 1.0;

58 }

59 }

60
61 // Occlusion factor becomes a fraction of the number of samples

62 Let occlusionFactor = occlusionFactor / SSAOSampleKernel.size;

63
64 Let Pixel = 1.0 - occlusionFactor;

65 }

66 }

B.2 Computing Blur

1 Inputs: TextureCoordinates

2 RotationTextureSize

3 SSAOTexture[][]

4
5 Outputs: BlurTexturePixels[][]

6
7 Procedure SimpleBlur:

8 {

9 ForEach Pixel in BlurTexturePixels:

10 {

11 // We blur around the same area covered by our SSAO rotation texture

12 // to increase its effectiveness

13 Let min = -RotationTextureSize / 2;

14 Let max = RotationTextureSize / 2;

15 Let texelSize = 1 / SSAOTexture.size;

16
17 // Accumulate and average the neighbouring pixels

18 Let result = 0.0;

19 For x = min To max:

20 {

21 For y = min To max:

22 {

23 Let texelOffset = Vector2(x, y) * texelSize;

24 Let result = result + SSAOTexture[TextureCoordinates.x + texelOffset.x]

25 [TextureCoordinates.y + texelOffset.y].r;

26 }

27 }

28
29 Let Pixel = result / (RotationTextureSize * RotationTextureSize);

30 }

31 }

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Setting the Scene
	1.2 Hypothesis
	1.3 Aim and Objectives
	1.4 Dissertation Outline

	2 Background Research
	2.1 Rasterisation
	2.2 Light and Global Illumination
	2.3 Ambient Occlusion
	2.4 Hardware Acceleration of Ambient Occlusion
	2.5 SSAO: Use in Video Games
	2.6 Deferred Rendering Pipelines and the G-Buffer
	2.7 SSAO: Theory of Operation
	2.7.1 Crytek SSAO
	2.7.2 Hemispherical SSAO, aka. StarCraft II SSAO
	2.7.3 Sample Kernel Generation
	2.7.4 Noise Reduction with Blur Filter

	3 Implementation
	3.1 High-Level Architecture Overview
	3.2 Hardware Platforms and Operating Systems
	3.3 Programming Language and Middleware
	3.4 Graphics Abstraction Layer
	3.5 Input/Output Abstraction Layer
	3.6 Cross-Platform Game Engine
	3.7 Deferred Rendering Pipeline with SSAO
	3.8 3D Assets Used for Testing
	3.9 Renderer Profiling Procedure

	4 Results and Evaluation
	4.1 PC-Class Hardware
	4.1.1 Frame Timings
	4.1.2 Frames Per Second

	4.2 Smartphone/Tablet-Class Hardware
	4.2.1 Frame Timings
	4.2.2 Frames Per Second

	4.3 Visual Quality
	4.4 Summary

	5 Conclusions
	5.1 Revisiting Our Original Goals
	5.2 What We Have Learned
	5.3 Possible Improvements
	5.4 Future Work

	Glossary
	References
	Appendix A Screenshots
	Appendix B Pseudocode
	B.1 Computing Hemispherical SSAO
	B.2 Computing Blur

